Ôn tập chương 1 toán 8

     
- Chọn bài xích -Bài 1: Nhân đơn thức với nhiều thứcBài 2: Nhân nhiều thức với đa thứcLuyện tập (trang 8-9)Bài 3: phần nhiều hằng đẳng thức xứng đáng nhớLuyện tập (trang 12)Bài 4: phần lớn hằng đẳng thức lưu niệm (tiếp)Bài 5: đầy đủ hằng đẳng thức kỷ niệm (tiếp)Luyện tập (trang 16-17)Bài 6: Phân tích đa thức thành nhân tử bằng phương thức đặt nhân tử chungBài 7: Phân tích nhiều thức thành nhân tử bằng cách thức dùng hằng đẳng thứcBài 8: Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tửBài 9: Phân tích nhiều thức thành nhân tử bằng phương pháp phối hợp nhiều phương phápLuyện tập (trang 25)Bài 10: Chia đối kháng thức cho đơn thứcBài 11: chia đa thức cho đối chọi thứcBài 12: phân tách đa thức một trở nên đã chuẩn bị xếpLuyện tập (trang 32)Ôn tập chương 1

Mục lục

Xem tổng thể tài liệu Lớp 8: tại đây

Xem cục bộ tài liệu Lớp 8: trên đây

Sách giải toán 8 Ôn tập chương 1 khiến cho bạn giải các bài tập trong sách giáo khoa toán, học xuất sắc toán 8 để giúp bạn rèn luyện khả năng suy luận hợp lý và phải chăng và đúng theo logic, hình thành kỹ năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:

A – thắc mắc ôn tập chương 1

1.

Bạn đang xem: ôn tập chương 1 toán 8

vạc biểu các qui tắc nhân đơn thức với đa thức, nhân nhiều thức với đa thức.

Trả lời:

– Nhân đối chọi thức với đa thức: mong muốn nhân một đơn thức cùng với một nhiều thức, ta nhân đối kháng thức với từng hạng tử của đa thức rồi cộng những tích cùng với nhau.

– Nhân đa thức với nhiều thức: ý muốn nhân một đa thức cùng với một đa thức, ta nhân từng hạng tử của đa thức này với từng hạng tử của đa thức cơ rồi cộng những tích với nhau.

2. Viết bảy hằng đẳng thức đáng nhớ.

Trả lời:

Bảy hằng đẳng thức xứng đáng nhớ:

1) (A + B)2 = A2 + 2AB + B2

2) (A – B)2 = A2 – 2AB + B2

3) A2 – B2 = (A – B)(A + B)

4) (A + B)3 = A3 + 3A2B + 3AB2 + B3

5) (A – B)3 = A3 – 3A2B + 3AB2 – B3

6) A3 + B3 = (A + B)(A2 – AB + B2)

7) A3 – B3 = (A – B)(A2 + AB + B2)

3. lúc nào thì 1-1 thức A phân tách hết cho đối chọi thức B?

Trả lời:

Đơn thức A phân tách hết cho đơn thức B khi mỗi đổi thay của B phần đông là đổi mới của A với số mũ không to hơn số mũ của chính nó trong A.

Xem thêm: “I'M Going Back To Work Next Week,” Said Harry Harry Said T

4. lúc nào thì đa thức A phân chia hết cho solo thức B?

Trả lời:

Khi từng hạng tử của đa thức A rất nhiều chia hết cho đối chọi thức B thì đa thức A chia hết cho solo thức B.

5. khi nào thì đa thức A phân chia hết cho đa thức B?


Trả lời:

Khi nhiều thức A chia hết cho đa thức B được dư bởi 0 thì ta nói đa thức A phân tách hết mang đến đa thức B.

Các bài xích giải Toán 7 Ôn tập chương 1 khác

Bài 75 (trang 33 SGK Toán 8 Tập 1): làm tính nhân:

*

Lời giải:

a) 5x2.(3x2 – 7x + 2)

= 5x2.3x2 + 5x2.(-7x) + 5x2.2

= (5.3).(x2.x2) + <5.(-7)>.(x2.x) + (5.2).x2

= 15.x2+2 + (-35).x2+1 + 10.x2

= 15x4 – 35x3 + 10x2

*

Các bài xích giải Toán 8 Ôn tập chương 1 khác

Bài 76 (trang 33 SGK Toán 8 Tập 1): làm tính nhân:

a) (2x2 – 3x)(5x2 – 2x + 1)

b) (x – 2y)(3xy + 5y2 + x)

Lời giải:

a) (2x2 – 3x)(5x2 – 2x + 1)

= 2x2(5x2 – 2x + 1) + (-3x)(5x2 – 2x + 1)

= 2x2.5x2 + 2x2.(-2x) + 2x2.1 + (–3x).5x2 + (-3x).(-2x) + (-3x).1

= (2.5)(x2.x2) + (2. (-2)).(x2.x) + 2x2 + <(-3).5>.(x.x2) + <(-3).(-2).(x.x) + (-3x)

= 10x4 – 4x3 + 2x2 – 15x3 + 6x2 – 3x

= 10x4 – (4x3 + 15x3) + (2x2 + 6x2) – 3x

= 10x4 – 19x3 + 8x2 – 3x

b) (x – 2y)(3xy + 5y2 + x)

= x.(3xy + 5y2 + x) + (-2y).(3xy + 5y2 + x)

= x.3xy + x.5y2 + x.x + (-2y).3xy + (–2y).5y2 + (–2y).x

= 3x2y + 5xy2 + x2 – 6xy2 – 10y3 – 2xy

= 3x2y + (5xy2 – 6xy2) + x2 – 10y3 – 2xy

= 3x2y – xy2 + x2 – 10y3 – 2xy

Các bài giải Toán 8 Ôn tập chương 1 khác

Bài 77 (trang 33 SGK Toán 8 Tập 1): Tính cấp tốc giá trị của biểu thức:

a) M = x2 + 4y2 – 4xy tại x = 18 và y = 4

b) N = 8x3 – 12x2y + 6xy2 – y3 trên x = 6 cùng y = – 8

Lời giải:

a) M = x2 + 4y2 – 4xy

= x2 – 2.x.2y + (2y)2 (Hằng đẳng thức (2))

= (x – 2y)2

Thay x = 18, y = 4 ta được:

M = (18 – 2.4)2 = 102 = 100

b) N = 8x3 – 12x2y + 6xy2 – y3

= (2x)3 – 3(2x)2y + 3.2xy2 – y3 (Hằng đẳng thức (5))

= (2x – y)3

Thay x = 6, y = – 8 ta được:

N = (2.6 – (-8))3 = 203 = 8000

Các bài giải Toán 8 Ôn tập chương 1 khác

Bài 78 (trang 33 SGK Toán 8 Tập 1): Rút gọn các biểu thức sau:

a) (x + 2)(x – 2) – (x – 3)(x + 1)


b) (2x + 1)2 + (3x – 1)2 + 2(2x + 1)(3x – 1)

Lời giải:

a) (x + 2)(x – 2) – (x – 3)(x + 1)

= x2 – 22 – (x2 + x – 3x – 3)

= x2 – 4 – x2 – x + 3x + 3

= 2x – 1

b) (2x + 1)2 + (3x – 1)2 + 2(2x + 1)(3x – 1)

= (2x + 1)2 + 2.(2x + 1)(3x – 1) + (3x – 1)2

= <(2x + 1) + (3x – 1)>2

= (2x + 1 + 3x – 1)2

= (5x)2

= 25x2

Các bài xích giải Toán 8 Ôn tập chương 1 khác

Bài 79 (trang 33 SGK Toán 8 Tập 1): Phân tích những đa thức sau thành nhân tử:

a) x2 – 4 + (x – 2)2

b) x3 – 2x2 + x – xy2

c) x3 – 4x2 – 12x + 27

Lời giải:

a) Cách 1: x2 – 4 + (x – 2)2

(Xuất hiện nay hằng đẳng thức (3))

= (x2– 22) + (x – 2)2

= (x – 2)(x + 2) + (x – 2)2

(Có nhân tử tầm thường x – 2)

= (x – 2)<(x + 2) + (x – 2)>

= (x – 2)(x + 2 + x – 2)

= (x – 2)(2x)

= 2x(x – 2)

Cách 2: x2 – 4 + (x – 2)2

(Khai triển hằng đẳng thức (2))

= x2 – 4 + (x2 – 2.x.2 + 22)

= x2 – 4 + x2 – 4x + 4

= 2x2 – 4x

(Có nhân tử bình thường là 2x)

= 2x(x – 2)

b) x3 – 2x2 + x – xy2

(Có nhân tử tầm thường x)

= x(x2 – 2x + 1 – y2)

(Có x2 – 2x + một là hằng đẳng thức).

= x<(x – 1)2 – y2>

(Xuất hiện tại hằng đẳng thức (3))

= x(x – 1 + y)(x – 1 – y)

c) x3 – 4x2 – 12x + 27

(Nhóm để xuất hiện thêm nhân tử chung)

= (x3 + 27) – (4x2 + 12x)

= (x3 + 33) – (4x2 + 12x)


(nhóm 1 là HĐT, team 2 có 4x là nhân tử chung)

= (x + 3)(x2 – 3x + 9) – 4x(x + 3)

= (x + 3)(x2 – 3x + 9 – 4x)

= (x + 3)(x2 – 7x + 9)

Các bài giải Toán 8 Ôn tập chương 1 khác

Bài 80 (trang 33 SGK Toán 8 Tập 1): làm cho tính chia:

a) (6x3 – 7x2 – x + 2) : (2x + 1)

b) (x4 – x3 + x2 + 3x) : (x2 – 2x + 3)

c) (x2 – y2 + 6x + 9) : (x + y + 3)

Lời giải:

a) Cách 1: triển khai phép chia

*

Vậy (6x3 – 7x2 – x + 2) : (2x + 1) = 3x2 – 5x + 2

Cách 2: so với 6x3 – 7x2 – x + 2 thành (2x + 1).P(x) + R(x)

6x3 – 7x2 – x + 2

= 6x3 + 3x2 – 10x2 – 5x + 4x + 2

(Tách -7x2 = 3x2 – 10x2; -x = -5x + 4x)

= 3x2.(2x + 1) – 5x.(2x + 1) + 2.(2x + 1)

= (3x2 – 5x + 2)(2x + 1)

Vậy (6x3 – 7x2 – x + 2) : (2x + 1) = 3x2 – 5x + 2

Giải thích phương pháp tách:

Vì bao gồm 6x3 đề xuất ta cần thêm 3x2 để rất có thể phân tích thành 3x2(2x + 1). Cho nên ta bóc tách -7x2 = 3x2 – 10x2.

Lại có -10x2 cần ta đề nghị thêm -5x để có thể phân tích thành -5x(2x + 1). Cho nên vì vậy ta bóc –x = -5x + 4x.

Có 4x, ta phải thêm 2 để có 2.(2x + 1) phải 2 không nhất thiết phải tách.

b)

Cách 1: triển khai phép chia


*

Vậy (x4 – x3 + x2 + 3x) : (x2 – 2x + 3) = x2 + x

Cách 2: so sánh x4 – x3 + x2 + 3x thành nhân tử bao gồm chứa x2 + x

x4 – x3 + x2 + 3x

= x.(x3 – x2 + x + 3)

= x.(x3 – 2x2 + 3x + x2 – 2x + 3)

= x.

= x.(x + 1)(x2 – 2x + 3)

Vậy (x4 – x3 + x2 + 3x) : (x2 – 2x + 3) = x(x + 1)

c) đối chiếu số bị tạo thành nhân tử, trong những số ấy có nhân tử là số chia.

(x2 – y2 + 6x + 9) : (x + y + 3)

(Có x2 + 6x + 9 là hằng đẳng thức)

= (x2 + 6x + 9 – y2) : (x + y + 3)

= <(x2 + 2.x.3 + 32) – y2> : (x + y + 3)

= <(x + 3)2 – y2> : (x + y + 3)

(Xuất hiện hằng đẳng thức (3))

= (x + 3 + y)(x + 3 – y) : (x + y + 3)

= x + 3 – y = x – y + 3

Các bài xích giải Toán 8 Ôn tập chương 1 khác

Bài 81 (trang 33 SGK Toán 8 Tập 1): search x, biết:

*

Lời giải:

*


(Xuất hiện tại hằng đẳng thức (3))


*

⇔ x = 0 hoặc x – 2 = 0 hoặc x + 2 = 0

+ x – 2 = 0 ⇔ x = 2

+ x + 2 = 0 ⇔ x = -2

Vậy x = 0; x = -2; x = 2

b) (x + 2)2 – (x – 2)(x + 2) = 0

(Có x + 2 là nhân tử chung)

⇔ (x + 2)<(x + 2) – (x – 2)> = 0

⇔ (x + 2)(x + 2 – x + 2) = 0

⇔ (x + 2).4 = 0

⇔ x + 2 = 0

⇔ x = – 2

Vậy x = -2

*

Các bài bác giải Toán 8 Ôn tập chương 1 khác

Bài 82 (trang 33 SGK Toán 8 Tập 1): triệu chứng minh:

a) x2 – 2xy + y2 + 1 > 0 với đa số số thực x cùng y.

Xem thêm: Giải Địa Lý 12 Bài 9: Thiên Nhiên Nhiệt Đới Ẩm Gió Mùa, Lý Thuyết Địa Lí 12 Bài 9

b) x – x2 – 1 2 – 2xy + y2 + 1

= (x2 – 2xy + y2) + 1

= (x – y)2 + 1.

(x – y)2 ≥ 0 với đa số x, y ∈ R

⇒ x2 – 2xy + y2 + 1 = (x – y)2 + 1 ≥ 0 + 1 = 1 > 0 với tất cả x, y ∈ R (ĐPCM).

b) Ta có:

*

Ta có:

*
với đa số số thực x

*
với tất cả số thực x

*
với tất cả số thực (ĐPCM)

Các bài giải Toán 8 Ôn tập chương 1 khác

Bài 83 (trang 33 SGK Toán 8 Tập 1): kiếm tìm n ∈ Z nhằm 2n2 – n + 2 phân tách hết cho 2n + 1.

Lời giải: